Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nutrients ; 16(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38613072

RESUMEN

Coronavirus Disease 2019 (COVID-19) manifestations range from mild to severe life-threatening symptoms, including death. COVID-19 susceptibility has been associated with various factors, but studies in Qatar are limited. The objective of this study was to investigate the correlation between COVID-19 susceptibility and various sociodemographic and lifestyle factors, including age, gender, body mass index, smoking status, education level, dietary patterns, supplement usage, physical activity, a history of bariatric surgery, diabetes, and hypertension. We utilized logistic regression to analyze these associations, using the data of 10,000 adult participants, aged from 18 to 79, from Qatar Biobank. In total, 10.5% (n = 1045) of the participants had COVID-19. Compared to non-smokers, current and ex-smokers had lower odds of having COVID-19 (odds ratio [OR] = 0.55; 95% CI: 0.44-0.68 and OR = 0.70; 95% CI: 0.57-0.86, respectively). Vitamin D supplement use was associated with an 18% reduction in the likelihood of contracting COVID-19 (OR = 0.82; 95% CI: 0.69-0.97). Obesity (BMI ≥ 30 kg/m2), a history of bariatric surgery, and higher adherence to the modern dietary pattern-characterized by the consumption of foods high in saturated fat and refined carbohydrates-were positively associated with COVID-19. Our findings indicate that adopting a healthy lifestyle may be helpful in the prevention of COVID-19 infection.


Asunto(s)
Bancos de Muestras Biológicas , COVID-19 , Adulto , Humanos , COVID-19/epidemiología , Qatar/epidemiología , Estilo de Vida , Suplementos Dietéticos
2.
J Med Virol ; 96(3): e29527, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38511514

RESUMEN

Neutralizing antibodies (NAbs) are elicited after infection and vaccination and have been well studied. However, their antibody-dependent cellular cytotoxicity (ADCC) functionality is still poorly characterized. Here, we investigated ADCC activity in convalescent sera from infected patients with wild-type (WT) severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) or omicron variant compared with three coronavirus disease 2019 (COVID-19) vaccine platforms and postvaccination breakthrough infection (BTI). We analyzed ADCC activity targeting SARS-CoV-2 spike (S) and nucleocapsid (N) proteins in convalescent sera following WT SARS-CoV-2-infection (n = 91), including symptomatic and asymptomatic infections, omicron-infection (n = 8), COVID-19 vaccination with messenger RNA- (mRNA)- (BNT162b2 or mRNA-1273, n = 77), adenovirus vector- (n = 41), and inactivated virus- (n = 46) based vaccines, as well as post-mRNA vaccination BTI caused by omicron (n = 28). Correlations between ADCC, binding, and NAb titers were reported. ADCC was elicited within the first month postinfection and -vaccination and remained detectable for ≥3 months. WT-infected symptomatic patients had higher S-specific ADCC levels than asymptomatic and vaccinated individuals. Also, no difference in N-specific ADCC activity was seen between symptomatic and asymptomatic patients, but the levels were higher than the inactivated vaccine. Notably, omicron infection showed reduced overall ADCC activity compared to WT SARS-CoV-2 infection. Although post-mRNA vaccination BTI elicited high levels of binding and NAbs, ADCC activity was significantly reduced. Also, there was no difference in ADCC levels across the four vaccines, although NAbs and binding antibody titers were significantly higher in mRNA-vaccinated individuals. All evaluated vaccine platforms are inferior in inducing ADCC compared to natural infection with WT SARS-CoV-2. The inactivated virus-based vaccine can induce N-specific ADCC activity, but its relevance to clinical outcomes requires further investigation. Our data suggest that ADCC could be used to estimate the extra-neutralization level against COVID-19 and provides evidence that vaccination should focus on other Fc-effector functions besides NAbs. Also, the decreased susceptibility of the omicron variant to ADCC offers valuable guidance for forthcoming efforts to identify the specific targets of antibodies facilitating ADCC.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , Vacuna BNT162 , SARS-CoV-2 , Sueroterapia para COVID-19 , Anticuerpos Neutralizantes , Citotoxicidad Celular Dependiente de Anticuerpos , Anticuerpos Antivirales , Vacunación
3.
Am J Epidemiol ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38061757

RESUMEN

The COVID-19 pandemic has highlighted the need to use infection testing databases to rapidly estimate effectiveness of prior infection in preventing reinfection ($P{E}_S$) by novel SARS-CoV-2 variants. Mathematical modeling was used to demonstrate a theoretical foundation for applicability of the test-negative, case-control study design to derive $P{E}_S$. Apart from the very early phase of an epidemic, the difference between the test-negative estimate for $P{E}_S$ and true value of $P{E}_S$ was minimal and became negligible as the epidemic progressed. The test-negative design provided robust estimation of $P{E}_S$ and its waning. Assuming that only 25% of prior infections are documented, misclassification of prior infection status underestimated $P{E}_S$, but the underestimate was considerable only when >50% of the population was ever infected. Misclassification of latent infection, misclassification of current active infection, and scale-up of vaccination all resulted in negligible bias in estimated $P{E}_S$. The test-negative design was applied to national-level testing data in Qatar to estimate $P{E}_S$ for SARS-CoV-2. $P{E}_S$ against SARS-CoV-2 Alpha and Beta variants was estimated at 97.0% (95% CI: 93.6-98.6) and 85.5% (95% CI: 82.4-88.1), respectively. These estimates were validated using a cohort study design. The test-negative design offers a feasible, robust method to estimate protection from prior infection in preventing reinfection.

4.
Sci Adv ; 9(40): eadh0761, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37792951

RESUMEN

Laboratory evidence suggests a possibility of immune imprinting for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We investigated the differences in the incidence of SARS-CoV-2 reinfection in a cohort of persons who had a primary Omicron infection, but different vaccination histories using matched, national, retrospective, cohort studies. Adjusted hazard ratio for reinfection incidence, factoring adjustment for differences in testing rate, was 0.43 [95% confidence interval (CI): 0.39 to 0.49] comparing history of two-dose vaccination to no vaccination, 1.47 (95% CI: 1.23 to 1.76) comparing history of three-dose vaccination to two-dose vaccination, and 0.57 (95% CI: 0.48 to 0.68) comparing history of three-dose vaccination to no vaccination. Divergence in cumulative incidence curves increased markedly when the incidence was dominated by BA.4/BA.5 and BA.2.75* Omicron subvariants. The history of primary-series vaccination enhanced immune protection against Omicron reinfection, but history of booster vaccination compromised protection against Omicron reinfection. These findings do not undermine the public health utility of booster vaccination.


Asunto(s)
COVID-19 , Reinfección , Humanos , Reinfección/prevención & control , Estudios Retrospectivos , COVID-19/prevención & control , SARS-CoV-2 , Vacunación
5.
Int J Infect Dis ; 136: 81-90, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37717648

RESUMEN

OBJECTIVES: We assessed short-, medium-, and long-term all-cause mortality risks after a primary SARS-CoV-2 infection. METHODS: A national, matched, retrospective cohort study was conducted in Qatar to assess risk of all-cause mortality in the national SARS-CoV-2 primary infection cohort compared with the national infection-naïve cohort. Associations were estimated using Cox proportional-hazards regression models. Analyses were stratified by vaccination status and clinical vulnerability status. RESULTS: Among unvaccinated persons, within 90 days after primary infection, the adjusted hazard ratio (aHR) comparing mortality incidence in the primary-infection cohort with the infection-naïve cohort was 1.19 (95% confidence interval 1.02-1.39). aHR was 1.34 (1.11-1.63) in persons more clinically vulnerable to severe COVID-19 and 0.94 (0.72-1.24) in those less clinically vulnerable. Beyond 90 days after primary infection, aHR was 0.50 (0.37-0.68); aHR was 0.41 (0.28-0.58) at 3-7 months and 0.76 (0.46-1.26) at ≥8 months. The aHR was 0.37 (0.25-0.54) in more clinically vulnerable persons and 0.77 (0.48-1.24) in less clinically vulnerable persons. Among vaccinated persons, mortality incidence was comparable in the primary-infection versus infection-naïve cohorts, regardless of clinical vulnerability status. CONCLUSIONS: COVID-19 mortality was primarily driven by an accelerated onset of death among individuals who were already vulnerable to all-cause mortality, but vaccination prevented these accelerated deaths.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Qatar/epidemiología , Estudios de Cohortes , Estudios Retrospectivos
6.
EClinicalMedicine ; 62: 102102, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37533414

RESUMEN

Background: Waning of natural infection protection and vaccine protection highlight the need to evaluate changes in population immunity over time. Population immunity of previous SARS-CoV-2 infection or of COVID-19 vaccination are defined, respectively, as the overall protection against reinfection or against breakthrough infection at a given point in time in a given population. Methods: We estimated these population immunities in Qatar's population between July 1, 2020 and November 30, 2022, to discern generic features of the epidemiology of SARS-CoV-2. Effectiveness of previous infection, mRNA primary-series vaccination, and mRNA booster (third-dose) vaccination in preventing infection were estimated, month by month, using matched, test-negative, case-control studies. Findings: Previous-infection effectiveness against reinfection was strong before emergence of Omicron, but declined with time after a wave and rebounded after a new wave. Effectiveness dropped after Omicron emergence from 88.3% (95% CI: 84.8-91.0%) in November 2021 to 51.0% (95% CI: 48.3-53.6%) in December 2021. Primary-series effectiveness against infection was 84.0% (95% CI: 83.0-85.0%) in April 2021, soon after introduction of vaccination, before waning gradually to 52.7% (95% CI: 46.5-58.2%) by November 2021. Effectiveness declined linearly by ∼1 percentage point every 5 days. After Omicron emergence, effectiveness dropped from 52.7% (95% CI: 46.5-58.2%) in November 2021 to negligible levels in December 2021. Booster effectiveness dropped after Omicron emergence from 83.0% (95% CI: 65.6-91.6%) in November 2021 to 32.9% (95% CI: 26.7-38.5%) in December 2021, and continued to decline thereafter. Effectiveness of previous infection and vaccination against severe, critical, or fatal COVID-19 were generally >80% throughout the study duration. Interpretation: High population immunity against infection may not be sustained beyond a year, but population immunity against severe COVID-19 is durable with slow waning even after Omicron emergence. Funding: The Biomedical Research Program and the Biostatistics, Epidemiology, and the Biomathematics Research Core, both at Weill Cornell Medicine-Qatar, Ministry of Public Health, Hamad Medical Corporation, Sidra Medicine, Qatar Genome Programme, Qatar University Biomedical Research Center, and Qatar University Internal Grant ID QUCG-CAS-23/24-114.

8.
EBioMedicine ; 95: 104734, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37515986

RESUMEN

BACKGROUND: Protection against SARS-CoV-2 symptomatic infection and severe COVID-19 of previous infection, mRNA two-dose vaccination, mRNA three-dose vaccination, and hybrid immunity of previous infection and vaccination were investigated in Qatar for the Alpha, Beta, and Delta variants. METHODS: Six national, matched, test-negative, case-control studies were conducted between January 18 and December 18, 2021 on a sample of 239,120 PCR-positive tests and 6,103,365 PCR-negative tests. FINDINGS: Effectiveness of previous infection against Alpha, Beta, and Delta reinfection was 89.5% (95% CI: 85.5-92.3%), 87.9% (95% CI: 85.4-89.9%), and 90.0% (95% CI: 86.7-92.5%), respectively. Effectiveness of two-dose BNT162b2 vaccination against Alpha, Beta, and Delta infection was 90.5% (95% CI, 83.9-94.4%), 80.5% (95% CI: 79.0-82.0%), and 58.1% (95% CI: 54.6-61.3%), respectively. Effectiveness of three-dose BNT162b2 vaccination against Delta infection was 91.7% (95% CI: 87.1-94.7%). Effectiveness of hybrid immunity of previous infection and two-dose BNT162b2 vaccination was 97.4% (95% CI: 95.4-98.5%) against Beta infection and 94.5% (95% CI: 92.8-95.8%) against Delta infection. Effectiveness of previous infection and three-dose BNT162b2 vaccination was 98.1% (95% CI: 85.7-99.7%) against Delta infection. All five forms of immunity had >90% protection against severe, critical, or fatal COVID-19 regardless of variant. Similar effectiveness estimates were observed for mRNA-1273. A mathematical model accurately predicted hybrid immunity protection by assuming that the individual effects of previous infection and vaccination acted independently. INTERPRETATION: Hybrid immunity, offering the strongest protection, was mathematically predicted by assuming that the immunities obtained from previous infection and vaccination act independently, without synergy or redundancy. FUNDING: The Biomedical Research Program and the Biostatistics, Epidemiology, and the Biomathematics Research Core, both at Weill Cornell Medicine-Qatar, Ministry of Public Health, Hamad Medical Corporation, Sidra Medicine, Qatar Genome Programme, Qatar University Biomedical Research Center, and Qatar University Internal Grant ID QUCG-CAS-23/24-114.


Asunto(s)
COVID-19 , Hepatitis D , Humanos , Vacuna BNT162 , COVID-19/prevención & control , SARS-CoV-2 , ARN Mensajero , Vacunación , Inmunidad Adaptativa
9.
Microbes Infect ; 25(7): 105149, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37169244

RESUMEN

The diet-microbiome-immunity axis is one among the many arms that draw up the "we are what we intake" proclamation. As such, studies on the effect of food and beverage intake on the gut environment and microbiome and on modulating immunological responses and the host's susceptibility to pathogens are on the rise. A typical accompaniment in different sustenance we consume on daily basis is the trimethylxanthine alkaloid caffeine. Being a chief component in our regular aliment, a better understanding of the effect of caffeine containing food and beverages on our gut-microbiome-immunity axis and henceforth on our health is much needed. In this study, we shed more light on the effect of oral consumption of caffeine supplemented sugar diet on the gut environment, specifically on the gut microbiota, innate immunity and host susceptibility to pathogens using the Drosophila melanogaster model organism. Our findings reveal that the oral intake of a dose-specific caffeine containing sucrose/agarose sugar diet causes a significant alteration within the fly gut milieu demarcated by microbial dysbiosis and an elevation in the production of reactive oxygen species and expression of immune-deficiency (Imd) pathway-dependent antimicrobial peptide genes. The oral intake of caffeine containing sucrose/agarose sugar diet also renders the flies more susceptible to bacterial infection and shortens their lifespan in both infection and non-infection settings. Our findings set forth additional insight into the potentiality of diet to alter the gut milieu and highlight the importance of dietary control on health.


Asunto(s)
Drosophila melanogaster , Microbioma Gastrointestinal , Animales , Drosophila melanogaster/microbiología , Cafeína/farmacología , Longevidad , Sefarosa , Sacarosa
10.
Lancet Infect Dis ; 23(7): 816-827, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36913963

RESUMEN

BACKGROUND: Long-term effectiveness of COVID-19 mRNA boosters in populations with different previous infection histories and clinical vulnerability profiles is inadequately understood. We aimed to investigate the effectiveness of a booster (third dose) vaccination against SARS-CoV-2 infection and against severe, critical, or fatal COVID-19, relative to that of primary-series (two-dose) vaccination over a follow-up duration of 1 year. METHODS: This observational, matched, retrospective, cohort study was done on the population of Qatar in people with different immune histories and different clinical vulnerability to infection. The source of data are Qatar's national databases for COVID-19 laboratory testing, vaccination, hospitalisation, and death. Associations were estimated using inverse-probability-weighted Cox proportional-hazards regression models. The primary outcome of the study is the effectiveness of COVID-19 mRNA boosters against infection and against severe COVID-19. FINDINGS: Data were obtained for 2 228 686 people who had received at least two vaccine doses starting from Jan 5, 2021, of whom 658 947 (29·6%) went on to receive a third dose before data cutoff on Oct 12, 2022. There were 20 528 incident infections in the three-dose cohort and 30 771 infections in the two-dose cohort. Booster effectiveness relative to primary series was 26·2% (95% CI 23·6-28·6) against infection and 75·1% (40·2-89·6) against severe, critical, or fatal COVID-19, during 1-year follow-up after the booster. Among people clinically vulnerable to severe COVID-19, effectiveness was 34·2% (27·0-40·6) against infection and 76·6% (34·5-91·7) against severe, critical, or fatal COVID-19. Effectiveness against infection was highest at 61·4% (60·2-62·6) in the first month after the booster but waned thereafter and was modest at only 15·5% (8·3-22·2) by the sixth month. In the seventh month and thereafter, coincident with BA.4/BA.5 and BA.2·75* subvariant incidence, effectiveness was progressively negative albeit with wide CIs. Similar patterns of protection were observed irrespective of previous infection status, clinical vulnerability, or type of vaccine (BNT162b2 vs mRNA-1273). INTERPRETATION: Protection against omicron infection waned after the booster, and eventually suggested a possibility for negative immune imprinting. However, boosters substantially reduced infection and severe COVID-19, particularly among individuals who were clinically vulnerable, affirming the public health value of booster vaccination. FUNDING: The Biomedical Research Program and the Biostatistics, Epidemiology, and the Biomathematics Research Core (both at Weill Cornell Medicine-Qatar), Ministry of Public Health, Hamad Medical Corporation, Sidra Medicine, Qatar Genome Programme, and Qatar University Biomedical Research Center.


Asunto(s)
Investigación Biomédica , COVID-19 , Humanos , Estudios Retrospectivos , Estudios de Cohortes , Vacuna BNT162 , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2/genética
12.
Vaccines (Basel) ; 11(2)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36851305

RESUMEN

Human monkeypox is a rare viral zoonosis that was first identified in 1970; since then, this infectious disease has been marked as endemic in central and western Africa. The disease has always been considered rare and self-limiting; however, recent worldwide reports of several cases suggest otherwise. Especially with monkeypox being recognized as the most important orthopoxvirus infection in humans in the smallpox post-eradication era, its spread across the globe marks a new epidemic. Currently, there is no proven treatment for human monkeypox, and questions about the necessity of developing a vaccine persist. Notably, if we are to take lessons from the COVID-19 pandemic, developing a nanomedicine-based preventative strategy might be prudent, particularly with the rapid growth of the use of nanotechnology and nanomaterials in medical research. Unfortunately, the collected data in this area is limited, dispersed, and often incomplete. Therefore, this review aims to trace all reported nanomedicine approaches made in the monkeypox area and to suggest possible directions that could be further investigated to develop a counteractive strategy against emerging and existing viruses that could diminish this epidemic and prevent it from becoming a potential pandemic, especially with the world still recovering from the COVID-19 pandemic.

13.
Pediatr Res ; 94(2): 477-485, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36658331

RESUMEN

BACKGROUND: We characterized and identified the genetic and antigenic variations of circulating rotavirus strains in comparison to used rotavirus vaccines. METHODS: Rotavirus-positive samples (n = 231) were collected and analyzed. The VP7 and VP4 genes were sequenced and analyzed against the rotavirus vaccine strains. Antigenic variations were illustrated on the three-dimensional models of surface proteins. RESULTS: In all, 59.7% of the hospitalized children were vaccinated, of which only 57.2% received two doses. There were no significant differences between the vaccinated and non-vaccinated groups in terms of clinical outcome. The G3 was the dominant genotype (40%) regardless of vaccination status. Several amino acid changes were identified in the VP7 and VP4 antigenic epitopes compared to the licensed vaccines. The highest variability was seen in the G3 (6 substitutions) and P[4] (11 substitutions) genotypes in comparison to RotaTeq®. In comparison to Rotarix®, G1 strains possessed three amino acid changes in 7-1a and 7-2 epitopes while P[8] strains possessed five amino acid changes in 8-1 and 8-3 epitopes. CONCLUSIONS: The current use of Rotarix® vaccine might not be effective in preventing the infection due to the higher numbers of G3-associated cases. The wide range of mutations in the antigenic epitopes compared to vaccine strains may compromise the vaccine's effectiveness. IMPACT: The reduced rotavirus vaccine effectiveness necessitate regular evaluation of the vaccine content to ensure optimal protection. We characterized and identified the genetic and antigenic variations of circulating rotavirus strains in comparison to the Rotarix vaccine strain that is used in Qatar. The study highlight the importance for regular monitoring of emerging rotavirus variants and their impact on vaccine effectiveness in young children.


Asunto(s)
Infecciones por Rotavirus , Rotavirus , Humanos , Niño , Lactante , Preescolar , Rotavirus/genética , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/prevención & control , Qatar , Antígenos Virales/genética , Antígenos Virales/química , Proteínas de la Cápside/genética , Genotipo , Epítopos/genética
15.
N Engl J Med ; 387(20): 1865-1876, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36322837

RESUMEN

BACKGROUND: The BNT162b2 vaccine against coronavirus disease 2019 (Covid-19) has been authorized for use in children 5 to 11 years of age and adolescents 12 to 17 years of age but in different antigen doses. METHODS: We assessed the real-world effectiveness of the BNT162b2 vaccine against infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among children and adolescents in Qatar. To compare the incidence of SARS-CoV-2 infection in the national cohort of vaccinated participants with the incidence in the national cohort of unvaccinated participants, we conducted three matched, retrospective, target-trial, cohort studies - one assessing data obtained from children 5 to 11 years of age after the B.1.1.529 (omicron) variant became prevalent and two assessing data from adolescents 12 to 17 years of age before the emergence of the omicron variant (pre-omicron study) and after the omicron variant became prevalent. Associations were estimated with the use of Cox proportional-hazards regression models. RESULTS: Among children, the overall effectiveness of the 10-µg primary vaccine series against infection with the omicron variant was 25.7% (95% confidence interval [CI], 10.0 to 38.6). Effectiveness was highest (49.6%; 95% CI, 28.5 to 64.5) right after receipt of the second dose but waned rapidly thereafter and was negligible after 3 months. Effectiveness was 46.3% (95% CI, 21.5 to 63.3) among children 5 to 7 years of age and 16.6% (95% CI, -4.2 to 33.2) among those 8 to 11 years of age. Among adolescents, the overall effectiveness of the 30-µg primary vaccine series against infection with the omicron variant was 30.6% (95% CI, 26.9 to 34.1), but many adolescents had been vaccinated months earlier. Effectiveness waned over time since receipt of the second dose. Effectiveness was 35.6% (95% CI, 31.2 to 39.6) among adolescents 12 to 14 years of age and 20.9% (95% CI, 13.8 to 27.4) among those 15 to 17 years of age. In the pre-omicron study, the overall effectiveness of the 30-µg primary vaccine series against SARS-CoV-2 infection among adolescents was 87.6% (95% CI, 84.0 to 90.4) and waned relatively slowly after receipt of the second dose. CONCLUSIONS: Vaccination in children was associated with modest, rapidly waning protection against omicron infection. Vaccination in adolescents was associated with stronger, more durable protection, perhaps because of the larger antigen dose. (Funded by Weill Cornell Medicine-Qatar and others.).


Asunto(s)
Vacuna BNT162 , COVID-19 , Eficacia de las Vacunas , Adolescente , Niño , Humanos , Vacuna BNT162/administración & dosificación , Vacuna BNT162/uso terapéutico , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/uso terapéutico , Qatar/epidemiología , Estudios Retrospectivos , SARS-CoV-2 , Preescolar , Eficacia de las Vacunas/estadística & datos numéricos
16.
Lancet Microbe ; 3(12): e944-e955, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36375482

RESUMEN

BACKGROUND: Understanding protection conferred by natural SARS-CoV-2 infection versus COVID-19 vaccination is important for informing vaccine mandate decisions. We compared protection conferred by natural infection versus that from the BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines in Qatar. METHODS: We conducted two matched retrospective cohort studies that emulated target trials. Data were obtained from the national federated databases for COVID-19 vaccination, SARS-CoV-2 testing, and COVID-19-related hospitalisation and death between Feb 28, 2020 (pandemic onset in Qatar) and May 12, 2022. We matched individuals with a documented primary infection and no vaccination record (natural infection cohort) with individuals who had received two doses (primary series) of the same vaccine (BNT162b2-vaccinated or mRNA-1273-vaccinated cohorts) at the start of follow-up (90 days after the primary infection). Individuals were exact matched (1:1) by sex, 10-year age group, nationality, comorbidity count, and timing of primary infection or first-dose vaccination. Incidence of SARS-CoV-2 infection and COVID-19-related hospitalisation and death in the natural infection cohorts was compared with incidence in the vaccinated cohorts, using Cox proportional hazards regression models with adjustment for matching factors. FINDINGS: Between Jan 5, 2021 (date of second-dose vaccine roll-out) and May 12, 2022, 104 500 individuals vaccinated with BNT162b2 and 61 955 individuals vaccinated with mRNA-1273 were matched to unvaccinated individuals with a documented primary infection. During follow-up, 7123 SARS-CoV-2 infections were recorded in the BNT162b2-vaccinated cohort and 3583 reinfections were recorded in the matched natural infection cohort. 4282 SARS-CoV-2 infections were recorded in the mRNA-1273-vaccinated cohort and 2301 reinfections were recorded in the matched natural infection cohort. The overall adjusted hazard ratio (HR) for SARS-CoV-2 infection was 0·47 (95% CI 0·45-0·48) after previous natural infection versus BNT162b2 vaccination, and 0·51 (0·49-0·54) after previous natural infection versus mRNA-1273 vaccination. The overall adjusted HR for severe (acute care hospitalisations), critical (intensive care unit hospitalisations), or fatal COVID-19 cases was 0·24 (0·08-0·72) after previous natural infection versus BNT162b2 vaccination, and 0·24 (0·05-1·19) after previous natural infection versus mRNA-1273 vaccination. Severe, critical, or fatal COVID-19 was rare in both the natural infection and vaccinated cohorts. INTERPRETATION: Previous natural infection was associated with lower incidence of SARS-CoV-2 infection, regardless of the variant, than mRNA primary-series vaccination. Vaccination remains the safest and most optimal tool for protecting against infection and COVID-19-related hospitalisation and death, irrespective of previous infection status. FUNDING: The Biomedical Research Program and the Biostatistics, Epidemiology, and Biomathematics Research Core, Weill Cornell Medicine-Qatar; Qatar Ministry of Public Health; Hamad Medical Corporation; Sidra Medicine; Qatar Genome Programme; and Qatar University Biomedical Research Center.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Reinfección , Estudios Retrospectivos , ARN Mensajero , SARS-CoV-2 , Vacuna BNT162 , Prueba de COVID-19 , Vacunas contra la COVID-19 , Qatar/epidemiología , Salud Pública
17.
iScience ; 25(11): 105438, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36310647

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a rapidly evolving RNA virus that mutates within hosts and exists as viral quasispecies. Here, we evaluated the within-host diversity among vaccinated and unvaccinated individuals (n = 379) infected with different SARS-CoV-2 Variants of Concern. The majority of samples harbored less than 14 intra-host single-nucleotide variants (iSNVs). A deep analysis revealed a significantly higher intra-host diversity in Omicron samples than in other variants (p value < 0.05). Vaccination status and type had a limited impact on intra-host diversity except for Beta-B.1.315 and Delta-B.1.617.2 vaccinees, who exhibited higher diversity than unvaccinated individuals (p values: <0.0001 and <0.0021, respectively). Three immune-escape mutations were identified: S255F in Delta and R346K and T376A in Omicron-B.1.1.529. The latter 2 mutations were fixed in BA.1 and BA.2 genomes, respectively. Overall, the relatively higher intra-host diversity among vaccinated individuals and the detection of immune-escape mutations, despite being rare, suggest a potential vaccine-induced immune pressure in vaccinated individuals.

20.
Front Immunol ; 13: 984784, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36177014

RESUMEN

In 2021, Qatar experienced considerable incidence of SARS-CoV-2 infection that was dominated sequentially by the Alpha, Beta, and Delta variants. Using the cycle threshold (Ct) value of an RT-qPCR-positive test to proxy the inverse of infectiousness, we investigated infectiousness of SARS-CoV-2 infections by variant, age, sex, vaccination status, prior infection status, and reason for testing in a random sample of 18,355 RT-qPCR-genotyped infections. Regression analyses were conducted to estimate associations with the Ct value of RT-qPCR-positive tests. Compared to Beta infections, Alpha and Delta infections demonstrated 2.56 higher Ct cycles (95% CI: 2.35-2.78), and 4.92 fewer cycles (95% CI: 4.67- 5.16), respectively. The Ct value declined gradually with age and was especially high for children <10 years of age, signifying lower infectiousness in small children. Children <10 years of age had 2.18 higher Ct cycles (95% CI: 1.88-2.48) than those 10-19 years of age. Compared to unvaccinated individuals, the Ct value was higher among individuals who had received one or two vaccine doses, but the Ct value decreased gradually with time since the second-dose vaccination. Ct value was 2.07 cycles higher (95% CI: 1.42-2.72) for those with a prior infection than those without prior infection. The Ct value was lowest among individuals tested because of symptoms and was highest among individuals tested as a travel requirement. Delta was substantially more infectious than Beta. Prior immunity, whether due to vaccination or prior infection, is associated with lower infectiousness of breakthrough infections, but infectiousness increases gradually with time since the second-dose vaccination.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adolescente , COVID-19/prevención & control , Niño , Humanos , Qatar , Vacunación , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...